Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109083, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361627

RESUMO

Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial ß-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.

2.
J Physiol ; 601(11): 2165-2188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814134

RESUMO

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Assuntos
Cinurenina , Triptofano , Adulto Jovem , Humanos , Idoso , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido Cinurênico , NAD/metabolismo , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
3.
Am J Physiol Endocrinol Metab ; 322(3): E260-E277, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068187

RESUMO

Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including V̇o2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.


Assuntos
Resistência Física , Transcriptoma , Idoso , Células Endoteliais , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/metabolismo , Resistência Física/fisiologia
4.
Med Sci Sports Exerc ; 53(6): 1151-1160, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315810

RESUMO

BACKGROUND: Skeletal muscle from lean and obese subjects elicits differential adaptations in response to exercise/muscle contractions. In order to determine whether obesity alters the adaptations in mitochondrial dynamics in response to exercise/muscle contractions and whether any of these distinct adaptations are linked to alterations in insulin sensitivity, we compared the effects of electrical pulse stimulation (EPS) on mitochondrial network structure and regulatory proteins in mitochondrial dynamics in myotubes from lean humans and humans with severe obesity and evaluated the correlations between these regulatory proteins and insulin signaling. METHODS: Myotubes from human skeletal muscle cells obtained from lean humans (body mass index, 23.8 ± 1.67 kg·m-2) and humans with severer obesity (45.5 ± 2.26 kg·m-2; n = 8 per group) were electrically stimulated for 24 h. Four hours after EPS, mitochondrial network structure, protein markers of insulin signaling, and mitochondrial dynamics were assessed. RESULTS: EPS enhanced insulin-stimulated AktSer473 phosphorylation, reduced the number of nonnetworked individual mitochondria, and increased the mitochondrial network size in both groups (P < 0.05). Mitochondrial fusion marker mitofusin 2 was significantly increased in myotubes from the lean subjects (P < 0.05) but reduced in subjects with severe obesity (P < 0.05). In contrast, fission marker dynamin-related protein 1 (Drp1Ser616) was reduced in myotubes from subjects with severe obesity (P < 0.05) but remained unchanged in lean subjects. Reductions in DrpSer616 phosphorylation were correlated with improvements in insulin-stimulated AktSer473 phosphorylation after EPS (r = -0.679, P = 0.004). CONCLUSIONS: Our data demonstrated that EPS induces more fused mitochondrial networks, which are associated with differential adaptations in mitochondrial dynamic processes in myotubes from lean humans and human with severe obesity. It also suggests that improved insulin signaling after muscle contractions may be linked to the reduction in Drp1 activity.


Assuntos
Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Dinâmica Mitocondrial , Fibras Musculares Esqueléticas/fisiologia , Obesidade Mórbida/fisiopatologia , Magreza/fisiopatologia , Adaptação Fisiológica , Adulto , Células Cultivadas , Dinaminas/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Insulina/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Contração Muscular , Fosforilação , Transdução de Sinais
5.
Clin Transl Sci ; 14(2): 481-486, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222389

RESUMO

Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of inspiratory muscle weakness due to diaphragmatic atrophy and contractile dysfunction (termed ventilator-induced diaphragm dysfunction (VIDD)). Although VIDD is a major risk factor for problems in weaning patients from MV, a standard therapy to prevent VIDD does not exist. However, emerging evidence suggests that pharmacological blockade of angiotensin II type 1 receptors (AT1Rs) protects against VIDD. Nonetheless, the essential characteristics of AT1R blockers (ARBs) required to protect against VIDD remain unclear. To determine the traits of ARBs that are vital for protection against VIDD, we compared the efficacy of two clinically relevant ARBs, irbesartan and olmesartan; these ARBs differ in molecular structure and effects on AT1Rs. Specifically, olmesartan blocks both angiotensin II (AngII) binding and mechanical activation of AT1Rs, whereas irbesartan prevents only AngII binding to AT1Rs. Using a well-established preclinical model of prolonged MV, we tested the hypothesis that compared with irbesartan, olmesartan provides greater protection against VIDD. Our results reveal that irbesartan does not protect against VIDD whereas olmesartan defends against both MV-induced diaphragmatic atrophy and contractile dysfunction. These findings support the hypothesis that olmesartan is superior to irbesartan in protecting against VIDD and are consistent with the concept that blockade of mechanical activation of AT1Rs is a required property of ARBs to shield against VIDD. These important findings provide a foundation for future clinical trials to evaluate ARBs as a therapy to protect against VIDD.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Diafragma/patologia , Respiração Artificial/efeitos adversos , Animais , Atrofia/etiologia , Atrofia/prevenção & controle , Diafragma/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imidazóis/administração & dosagem , Irbesartana/administração & dosagem , Ratos , Respiração Artificial/instrumentação , Tetrazóis/administração & dosagem , Ventiladores Mecânicos/efeitos adversos
6.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007822

RESUMO

Oxidative damage to the diaphragm as a result of cervical spinal cord injury (SCI) promotes muscle atrophy and weakness. Respiratory insufficiency is the leading cause of morbidity and mortality in cervical spinal cord injury (SCI) patients, emphasizing the need for strategies to maintain diaphragm function. Hyperbaric oxygen (HBO) increases the amount of oxygen dissolved into the blood, elevating the delivery of oxygen to skeletal muscle and reactive oxygen species (ROS) generation. It is proposed that enhanced ROS production due to HBO treatment stimulates adaptations to diaphragm oxidative capacity, resulting in overall reductions in oxidative stress and inflammation. Therefore, we tested the hypothesis that exposure to HBO therapy acutely following SCI would reduce oxidative damage to the diaphragm muscle, preserving muscle fiber size and contractility. Our results demonstrated that lateral contusion injury at C3/4 results in a significant reduction in diaphragm muscle-specific force production and fiber cross-sectional area, which was associated with augmented mitochondrial hydrogen peroxide emission and a reduced mitochondrial respiratory control ratio. In contrast, rats that underwent SCI followed by HBO exposure consisting of 1 h of 100% oxygen at 3 atmospheres absolute (ATA) delivered for 10 consecutive days demonstrated an improvement in diaphragm-specific force production, and an attenuation of fiber atrophy, mitochondrial dysfunction and ROS production. These beneficial adaptations in the diaphragm were related to HBO-induced increases in antioxidant capacity and a reduction in atrogene expression. These findings suggest that HBO therapy may be an effective adjunctive therapy to promote respiratory health following cervical SCI.


Assuntos
Diafragma/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Diafragma/patologia , Modelos Animais de Doenças , Transporte de Elétrons/genética , Humanos , Oxigenoterapia Hiperbárica , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
7.
Am J Physiol Cell Physiol ; 319(6): C1011-C1019, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966127

RESUMO

The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Glicogênio/metabolismo , Glicólise/fisiologia , Humanos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Mulheres
10.
Med Sci Sports Exerc ; 51(6): 1106-1115, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30629044

RESUMO

PURPOSE: Doxorubicin (DOX) is a highly effective chemotherapeutic agent used in the treatment of a broad spectrum of cancers. However, clinical use of DOX is limited by irreversible and dose-dependent hepatotoxicity. The liver is the primary organ responsible for the clearance of antineoplastic agents, and evidence indicates that hepatotoxicity occurs as a result of impaired mitochondrial efficiency during DOX metabolism. In this regard, exercise training is sufficient to improve mitochondrial function and protect against DOX-induced cytotoxicity. Therefore, the purpose of this study was to determine whether short-term exercise preconditioning is sufficient to protect against DOX-induced liver mitochondrionopathy. METHODS: Female Sprague-Dawley rats (4-6 months old) were randomly assigned to one of four groups: 1) sedentary, treated with saline; 2) sedentary, treated with DOX; 3) exercise trained, treated with saline; and 4) exercise trained, treated with DOX. Exercise-trained animals underwent 5 d of treadmill running habituation followed by 10 d of running for 60 min·d (30 m·min; 0% grade). After the last training bout, exercise-trained and sedentary animals were injected with either DOX (20 mg·kg i.p.) or saline. Two days after drug treatment, the liver was removed and mitochondria were isolated. RESULTS: DOX treatment induced mitochondrial dysfunction of the liver in sedentary animals because of alterations in mitochondrial oxidative capacity, biogenesis, degradation, and protein acetylation. Furthermore, exercise preconditioning protected against DOX-mediated liver mitochondrionopathy, which was associated with the maintenance of mitochondrial oxidative capacity and protein acetylation. CONCLUSION: These findings demonstrate that endurance exercise training protects against DOX-induced liver mitochondrial dysfunction, which was attributed to modifications in organelle oxidative capacity and mitochondrial protein acetylation.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Condicionamento Físico Animal , Acetilação , Animais , Feminino , Mitocôndrias Hepáticas/fisiologia , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Biogênese de Organelas , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley
11.
Redox Biol ; 20: 402-413, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414534

RESUMO

Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in rapid diaphragmatic atrophy and contractile dysfunction, collectively termed ventilator-induced diaphragm dysfunction (VIDD). Recent evidence reveals that endurance exercise training, performed prior to MV, protects the diaphragm against VIDD. While the mechanism(s) responsible for this exercise-induced protection against VIDD remain unknown, increased diaphragm antioxidant expression may be required. To investigate the role that increased antioxidants play in this protection, we tested the hypothesis that elevated levels of the mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) is required to achieve exercise-induced protection against VIDD. Cause and effect was investigated in two ways. First, we prevented the exercise-induced increase in diaphragmatic SOD2 via delivery of an antisense oligonucleotide targeted against SOD2 post-exercise. Second, using transgene overexpression of SOD2, we determined the effects of increased SOD2 in the diaphragm independent of exercise training. Results from these experiments revealed that prevention of the exercise-induced increases in diaphragmatic SOD2 results in a loss of exercise-mediated protection against MV-induced diaphragm atrophy and a partial loss of protection against MV-induced diaphragmatic contractile dysfunction. In contrast, transgenic overexpression of SOD2 in the diaphragm, independent of exercise, did not protect against MV-induced diaphragmatic atrophy and provided only partial protection against MV-induced diaphragmatic contractile dysfunction. Collectively, these results demonstrate that increased diaphragmatic levels of SOD2 are essential to achieve the full benefit of exercise-induced protection against VIDD.


Assuntos
Diafragma/metabolismo , Diafragma/fisiopatologia , Condicionamento Físico Animal , Respiração Artificial/efeitos adversos , Superóxido Dismutase/metabolismo , Animais , Antioxidantes/metabolismo , Atrofia , Diafragma/patologia , Ativação Enzimática , Feminino , Expressão Gênica , Glutationa Redutase/metabolismo , Camundongos , Mitocôndrias/metabolismo , Contração Muscular , Proteólise , Superóxido Dismutase/genética
12.
Mitochondrion ; 45: 52-62, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29474837

RESUMO

Doxorubicin (DOX) is a highly effective anthracycline antibiotic. Unfortunately, the clinical use of DOX is limited by the risk of deleterious effects to cardiac and respiratory (i.e. diaphragm) muscle, resulting from mitochondrial reactive oxygen species (ROS) production. In this regard, exercise is demonstrated to protect against DOX-induced myotoxicity and prevent mitochondrial dysfunction. However, the protective mechanisms are currently unclear. We hypothesized that exercise may induce protection by increasing the expression of mitochondria-specific ATP-binding cassette (ABC) transporters and reducing mitochondrial DOX accumulation. Our results confirm this finding and demonstrate that two weeks of exercise preconditioning is sufficient to prevent cardiorespiratory dysfunction.


Assuntos
Antibióticos Antineoplásicos/análise , Diafragma/química , Doxorrubicina/análise , Mitocôndrias/química , Miocárdio/química , Condicionamento Físico Animal , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Feminino , Ratos Sprague-Dawley
13.
Int J Obes (Lond) ; 43(4): 895-905, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29892037

RESUMO

BACKGROUND/OBJECTIVE: The partitioning of glucose toward glycolytic end products rather than glucose oxidation and glycogen storage is evident in skeletal muscle with severe obesity and type 2 diabetes. The purpose of the present study was to determine the possible mechanism by which severe obesity alters insulin-mediated glucose partitioning in human skeletal muscle. SUBJECTS/METHODS: Primary human skeletal muscle cells (HSkMC) were isolated from lean (BMI = 23.6 ± 2.6 kg/m2, n = 9) and severely obese (BMI = 48.8 ± 1.9 kg/m2, n = 8) female subjects. Glucose oxidation, glycogen synthesis, non-oxidized glycolysis, pyruvate oxidation, and targeted TCA cycle metabolomics were examined in differentiated myotubes under basal and insulin-stimulated conditions. RESULTS: Myotubes derived from severely obese subjects exhibited attenuated response of glycogen synthesis (20.3%; 95% CI [4.7, 28.8]; P = 0.017) and glucose oxidation (5.6%; 95% CI [0.3, 8.6]; P = 0.046) with a concomitant greater increase (23.8%; 95% CI [5.7, 47.8]; P = 0.004) in non-oxidized glycolytic end products with insulin stimulation in comparison to the lean group (34.2% [24.9, 45.1]; 13.1% [8.6, 16.4], and 2.9% [-4.1, 12.2], respectively). These obesity-related alterations in glucose partitioning appeared to be linked with reduced TCA cycle flux, as 2-[14C]-pyruvate oxidation (358.4 pmol/mg protein/min [303.7, 432.9] vs. lean 439.2 pmol/mg protein/min [393.6, 463.1]; P = 0.013) along with several TCA cycle intermediates, were suppressed in the skeletal muscle of severely obese individuals. CONCLUSIONS: These data suggest that with severe obesity the partitioning of glucose toward anaerobic glycolysis in response to insulin is a resilient characteristic of human skeletal muscle. This altered glucose partitioning appeared to be due, at least in part, to a reduction in TCA cycle flux.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Glicogênio/metabolismo , Glicólise/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Obesidade Mórbida/metabolismo , Ácidos Tricarboxílicos/metabolismo , Adulto , Células Cultivadas/fisiologia , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/patologia , Obesidade Mórbida/fisiopatologia , Cultura Primária de Células
14.
Front Physiol ; 9: 1883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687111

RESUMO

Sarcopenia is the loss of muscle mass, strength, and physical function that is characteristic of aging. The progression of sarcopenia is gradual but may be accelerated by periods of muscle loss during physical inactivity secondary to illness or injury. The loss of mobility and independence and increased comorbidities associated with sarcopenia represent a major healthcare challenge for older adults. Mitochondrial dysfunction and impaired proteostatic mechanisms are important contributors to the complex etiology of sarcopenia. As such, interventions that target improving mitochondrial function and proteostatic maintenance could mitigate or treat sarcopenia. Exercise is currently the only effective option to treat sarcopenia and does so, in part, by improving mitochondrial energetics and protein turnover. Exercise interventions also serve as a discovery tool to identify molecular targets for development of alternative therapies to treat sarcopenia. In summary, we review the evidence linking mitochondria and proteostatic maintenance to sarcopenia and discuss the therapeutic potential of interventions addressing these two factors to mitigate sarcopenia.

15.
Surg Obes Relat Dis ; 13(11): 1853-1862, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28673470

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery has been shown to induce positive metabolic adaptations for individuals with severe obesity (body mass index ≥40 kg/m2), including improved peripheral insulin action. Although a major site of insulin action, the time course changes in skeletal muscle glucose metabolism following RYGB is unclear. OBJECTIVES: To investigate the acute and chronic effects of RYGB surgery on insulin-stimulated glucose metabolism in cultured human primary myotubes derived from nondiabetic severely obese humans. SETTING: East Carolina University Bariatric Surgery Center and East Carolina Diabetes and Obesity Institute. METHODS: Primary human skeletal muscle cells were isolated from biopsies obtained from 8 women with severe obesity before, 1 month, and 7 months following RYGB surgery. Glucose metabolism, glycogen content, and insulin signal transduction were determined in differentiated myotubes. RESULTS: Insulin-stimulated glycogen synthesis and glucose oxidation increased in human myotubes derived from patients with severe obesity at both 1 and 7 months post-RYGB. However, there were no alterations indicative of enhanced insulin signal transduction. At 1 month post-RYGB, muscle glycogen levels were lower (-23%) and phosphorylation of acetyl CoA carboxylase 2 (ACC2) was elevated (+16%); both returned to presurgery levels at 7 months after RYGB in myotubes derived from patients. At 7 months post-RYGB, there was an increase in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) protein content (+54%). CONCLUSION: These data indicate that insulin action intrinsically improves in cultured human primary myotubes derived from nondiabetic severely obese patients following RYGB surgery; however, the cellular alterations involved appear to consist of distinct acute and chronic components.


Assuntos
Derivação Gástrica , Glucose/metabolismo , Glicogênio/biossíntese , Insulina/administração & dosagem , Fibras Musculares Esqueléticas/metabolismo , Obesidade Mórbida/patologia , Redução de Peso/fisiologia , Doença Aguda , Adulto , Biópsia , Células Cultivadas , Doença Crônica , Feminino , Seguimentos , Humanos , Hipoglicemiantes/administração & dosagem , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Período Pós-Operatório , Transdução de Sinais , Fatores de Tempo
16.
Am J Physiol Endocrinol Metab ; 313(2): E195-E202, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28487439

RESUMO

Contractile activity (e.g., exercise) evokes numerous metabolic adaptations in human skeletal muscle, including enhanced insulin action and substrate oxidation. However, there is intersubject variation in the physiological responses to exercise, which may be linked with factors such as the degree of obesity. Roux-en-Y gastric bypass (RYGB) surgery reduces body mass in severely obese (body mass index ≥ 40 kg/m2) individuals; however, it is uncertain whether RYGB can potentiate responses to contractile activity in this potentially exercise-resistant population. To examine possible interactions between RYGB and contractile activity, muscle biopsies were obtained from severely obese patients before and after RYGB, differentiated into myotubes, and electrically stimulated, after which changes in insulin action and glucose oxidation were determined. Before RYGB, myotubes were unresponsive to electrical stimulation, as indicated by no changes in insulin-stimulated glycogen synthesis and basal glucose oxidation. However, myotubes from the same patients at 1 mo after RYGB increased insulin-stimulated glycogen synthesis and basal glucose oxidation when subjected to contraction. While unresponsive before surgery, contraction improved insulin-stimulated phosphorylation of AS160 (Thr642, Ser704) after RYGB. These data suggest that RYGB surgery may enhance the ability of skeletal muscle from severely obese individuals to respond to contractile activity.


Assuntos
Derivação Gástrica , Glucose/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Adulto , Metabolismo dos Carboidratos , Células Cultivadas , Feminino , Humanos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Cultura Primária de Células
17.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R426-R433, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039193

RESUMO

The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg-1·min-1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved (P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced (P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended (P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated (P < 0.05). Following training (day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated (P < 0.05) compared with day 1 Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation.


Assuntos
Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Músculo Esquelético/citologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Humano/métodos , Ativação Transcricional/fisiologia
18.
Int J Sport Nutr Exerc Metab ; 24(1): 70-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23980254

RESUMO

We previously reported an increase in skeletal muscle protein synthesis during fasted and fed recovery from nonexhaustive aerobic exercise (Harber et al., 2010). The current study examined skeletal muscle intracellular signaling in the same subjects to further investigate mechanisms of skeletal muscle protein metabolism with and without feeding following aerobic exercise. Eight males (VO2peak: 52 ± 2 ml⁻¹·kg⁻¹·min⁻¹) performed 60-min of cycle ergometry at 72 ± 1% VO2peak on two occasions in a counter-balanced design. Exercise trials differed only in the postexercise nutritional intervention: EX-FED (5 kcal, 0.83 g carbohydrate, 0.37 g protein, 0.03 g fat per kg body weight) and EX-FAST (noncaloric, isovolumic placebo) ingested immediately and one hour after exercise. Muscle biopsies were obtained from the vastus lateralis at rest (on a separate day) and two hours postexercise to assess intracellular signaling via western blotting of p70S6K1, eEF2, 4EBP1, AMPKα and p38 MAPK. p70S6K1 phosphorylation was elevated (p < .05) in EX-FED relative to REST and EX-FAST. eEF2, 4EBP1, AMPKα and p38 MAPK signaling were unaltered at 2 h after exercise independent of feeding status when expressed as the ratio of phosphorylated to total protein normalized to actin. These data demonstrate that feeding after a nonexhaustive bout of aerobic exercise stimulates skeletal muscle p70S6K1 intracellular signaling favorable for promoting protein synthesis which may, as recent literature has suggested, better prepare the muscle for subsequent exercise bouts. These data provide further support into the role of feeding on mechanisms regulating muscle protein metabolism during recovery from aerobic exercise.


Assuntos
Ingestão de Energia/fisiologia , Exercício Físico/fisiologia , Jejum/fisiologia , Proteínas Musculares/metabolismo , Músculo Quadríceps/fisiologia , Descanso/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Ciclismo/fisiologia , Biópsia , Ingestão de Alimentos , Humanos , Masculino , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Músculo Quadríceps/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Diabetes ; 63(1): 142-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101676

RESUMO

In insulin-sensitive skeletal muscle, the expression of constitutively active Ca(2+)/calmodulin-dependent protein kinase kinase α (caCaMKKα) stimulates glucose uptake independent of insulin signaling (i.e., Akt and Akt-dependent TBC1D1/TBC1D4 phosphorylation). Our objectives were to determine whether caCaMKKα could stimulate glucose uptake additively with insulin in insulin-sensitive muscle, in the basal state in insulin-resistant muscle, and if so, to determine whether the effects were associated with altered TBC1D1/TBC1D4 phosphorylation. Mice were fed a control or high-fat diet (60% kcal) for 12 weeks to induce insulin resistance. Muscles were transfected with empty vector or caCaMKKα plasmids using in vivo electroporation. After 2 weeks, caCaMKKα protein was robustly expressed. In insulin-sensitive muscle, caCaMKKα increased basal in vivo [(3)H]-2-deoxyglucose uptake approximately twofold, insulin increased glucose uptake approximately twofold, and caCaMKKα plus insulin increased glucose uptake approximately fourfold. caCaMKKα did not increase basal TBC1D1 (Ser(237), Thr(590), Ser(660), pan-Thr/Ser) or TBC1D4 (Ser(588), Thr(642), pan-Thr/Ser) phosphorylation. In insulin-resistant muscle, caCaMKKα increased basal glucose uptake approximately twofold, and attenuated high-fat diet-induced basal TBC1D1 (Thr(590), pan-Thr/Ser) and TBC1D4 (Ser(588), Thr(642), pan-Thr/Ser) phosphorylation. In cell-free assays, CaMKKα increased TBC1D1 (Thr(590), pan-Thr/Ser) and TBC1D4 (Ser(588), pan-Thr/Ser) phosphorylation. Collectively, these results demonstrate that caCaMKKα stimulates glucose uptake additively with insulin, and in insulin-resistant muscle, and alters the phosphorylation of TBC1D1/TBC1D4.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...